工学 >>> 化学工程 >>> 化学工程基础学科 化工测量技术与仪器仪表 化工传递过程 化学分离工程 化学反应工程 化工系统工程 化工机械与设备 无机化学工程 有机化学工程 电化学工程 高聚物工程 煤化学工程 精细化学工程 造纸技术 毛皮与制革工程 制药工程 生物化学工程 化学工程其他学科
搜索结果: 1-15 共查到化学工程 能量密度相关记录27条 . 查询时间(0.093 秒)
复合磷酸焦磷酸亚铁钠因其成本低、循环性能优异被视为一种极具应用潜力的钠离子电池正极材料。中国科学院过程工程研究所绿色化工研究部赵君梅研究员团队通过激发惰性磷酸铁钠提升了铁基磷酸焦磷酸盐正极材料的可逆容量和能量密度。相关研究成果于2024年3月28日发表在Journal of the American Chemical Society上(DOI:10.1021/jacs.3c14452)。
铝硫(Al-S)电池由于其高体积能量密度、高安全性、低成本以及Al和S元素的高丰度而被认为是可以满足日益增长储能需求的替代品。然而,铝硫电池仍存在许多挑战,如多硫化物转化动力学缓慢、电解液兼容性差和潜在的铝腐蚀和枝晶形成等问题。当前大多数研究都集中在设计或开发合适的基体材料或优化兼容的电解质上,以寻求高性能的Al-S体系,包括:i) 设计高导电性的基体来提高电极电导率;ii) 开发杂原子掺杂的多孔...
近日,中国科学院大连化学物理研究所催化基础国家重点实验室无机膜与催化新材料研究组(504组)杨维慎研究员和朱凯月副研究员团队在碱性镍锌电池研发方面取得新进展,提出了一种新型正极的设计策略,通过在氢氧化镍正极上负载氧还原催化剂(例如Pt、MnO2等),制备出“可呼吸式”氢氧化镍正极,显著提高了镍锌电池的能量转化效率和循环稳定性。
搭配高电压高镍三元层状正极(LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.9))和锂金属负极的锂金属二次电池(LMBs)体系被视为下一代最具前景的高能量密度储能器件之一。然而,在传统碳酸酯类电解液中,锂金属负极会出现严重的锂枝晶生长和“死锂”堆积现象,其不仅会导致电池库伦效率低和循环稳定性差,还会刺穿隔膜导致电池发生内短路,进而出现电池燃烧爆炸现象,严重危害到使用者的生命和财产安全。...
搭配高电压高镍三元层状正极(LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.9))和锂金属负极的锂金属二次电池(LMBs)体系被视为下一代最具前景的高能量密度储能器件之一。然而,在传统碳酸酯类电解液中,锂金属负极会出现严重的锂枝晶生长和“死锂”堆积现象,其不仅会导致电池库伦效率低和循环稳定性差,还会刺穿隔膜导致电池发生内短路,进而出现电池燃烧爆炸现象,严重危害到使用者的生命和财产安全。...
2022年5月27日消息,据界面新闻报道,国轩高科工研院副院长张宏立在科技大会上介绍,由公司研发的三元半固态电池将会在今年内正式量产,其电芯能量密度达到360Wh/kg,相比市面上主流的三元锂电池有大幅提升。
2022年3月31日,记者从中国科学院青岛生物能源与过程研究所获悉,该研究所先进储能材料与技术研究组在武建飞研究员的带领下,近期在高电压电解液体系开发应用方面取得关键性进展,相关研究成果近日发表于国际期刊《化学工程杂志》。
从中国科学院青岛生物能源与过程研究所获悉,该研究所先进储能材料与技术研究组在武建飞研究员的带领下,近期在高电压电解液体系开发应用方面取得关键性进展,相关研究成果近日发表于国际期刊《化学工程杂志》。该研究团队开发了一种新型的高压氟化电解液体系,将NCM811正极材料的工作电压从4.2V突破性地提高到4.6V,拓展了三元体系的使用上限和应用范围,突破了高镍三元正极在高电压下容量衰减严重等障碍,为设计开...
近日,力学与工程科学学院鲍垠桦副教授与上海大学双聘院士、中国科学院院士、北京理工大学方岱宁教授,力学与工程科学学院吕浡,宋亦诚,张俊乾教授等人合作,在高能量密度柔性锂离子电池方面取得重要研究进展。研究成果以“Crocodile skin inspired rigid-supple integrated flexible lithium ion batteries with high energy ...
锂-空气电池由于具有超高的理论能量密度被誉为二次锂电池的“圣杯”,因而受到了广泛关注。但是目前锂-空气电池在循环过程中会发生许多副反应从而导致电池性能的迅速衰减,极大限制了锂-空气电池的应用。例如,锂-空气电池在充放电过程中会产生一系列含氧中间体,这些中间体不仅能使碳基催化剂被氧化,还会导致电解液的分解并持续攻击锂负极等,使锂-空气电池的可逆性受到严重挑战。尽管锂-空气电池的充放电反应需要含氧中间...
据日本媒体16日报道,日本汤浅公司与关西大学合作开发出一款轻型锂硫电池,其质量能量密度可达现有锂电池的近两倍。
镁空气电池具有较高的理论能量密度,使用中性电解质,且镁生物安全性较高,是一种较为理想的体内能源设备。然而,目前报道的镁空气电池实际能量密度低,一方面是由于镁负极和水系电解质容易发生腐蚀反应。另一方面放电产物氢氧化镁会附着在镁金属表面,阻止电解质和镁的接触,使放电反应停止,降低镁负极的利用率。
2021年3月31日,东南大学电子学院黄晓东教授牵头的国家重点研发计划“制造基础技术与关键部件”重点专项“硅基MEMS高能量密度薄膜锂离子电池”项目启动暨实施方案论证会在南京顺利召开。电子学院科研副院长徐申及科研院等相关部门负责同志出席了论证会。
近期,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源实验室E01组林良栋博士,在索鎏敏特聘研究员的指导下,从正极材料(Angew. Chem. Int. Ed. 2021, 10.1002/anie.202017063)、负极集流体(Adv. Energy Mater. 2021, 10.1002/aenm.202003709)等方面入手展开系列研究(图1),并提出切实可行的综合解决方案...
锂金属二次电池是突破500Wh/kg能量密度的下一代电池技术的重要发展方向。相较于传统锂离子电池,该电池体系对正、负极材料和电解液等关键材料以及电池设计与构建等均提出了新的要求。具有高放电比容量(~300 mAh/g)的富锂锰基正极材料被认为是实现这一技术目标的理想之选,但其电压衰减、首次不可逆容量大、循环寿命不佳等问题依然突出。而金属锂负极的电化学沉积/溶解行为可逆性差、易于枝晶状生长、充放电过...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...